SIR_2020_temp

1589 days ago by stade

# SIR program, for studying an epidemic using Euler’s method # First, specify the starting and ending points, stepsize, and total number of observation points tstart=0 tfin=110 stepsize=0.5 length=((tfin-tstart)/stepsize)+1 # Next, specify values of parameters, and initial values of variables a=0.000005 b=1/14 S=49600 I=400 R=0 t=tstart # Set up empty lists for the values we're about to compute Svalues=[] Ivalues=[] Rvalues=[] tvalues=[] # The following loop does three things: # (1) stores the current values of S, I, R, and t into the lists created above; # (2) computes the next values of S, I, R using Euler's method; # (3) increases t by the stepsize for i in range(length): # Store current values Svalues.append(S) Ivalues.append(I) Rvalues.append(R) tvalues.append(t) # Compute rates of change using SIR equations Sprime=-a*S*I Iprime=a*S*I-b*I Rprime=b*I # Net change equals rate of change times stepsize DeltaS=Sprime*stepsize DeltaI=Iprime*stepsize DeltaR=Rprime*stepsize # New values equal current values plus net change S=S+DeltaS I=I+DeltaI R=R+DeltaR t=t+stepsize # Next time through the loop, the above new values play the role of current values # Zip the t values with the S/I/R values into lists of ordered pairs, and create plots of these Splot=list_plot(list(zip(tvalues,Svalues)),marker='o',color='blue') Iplot=list_plot(list(zip(tvalues,Ivalues)),marker='o',color='red') Rplot=list_plot(list(zip(tvalues,Rvalues)),marker='o',color='green') # Now plot the computed S,I,R values together on a single graph, with axes labelled appropriately SIRgraph=Splot+Iplot+Rplot show(SIRgraph,axes_labels=['$t$ (days)','$S,I,R$ (individuals)']) 
       
SIRgraph.save('sirgraph.pdf')