eulerexamprob

2124 days ago by rohi1040

 
       
#old exam problem x,y = var('x y') G=plot_slope_field(x+1, (x,-5,5), (y,-5,5),plot_points=11) for m in range(-5,6): for n in range(-5,6): v=m+1 G+=text(r'$'+str(v)+'$',(m+0.3,n+0.3),color="black") G+=point((-4,4),size=100,color="black") G+=point((-3,1),size=100,color="black") G+=point((-2,-1),size=100,color="black") G+=line([(-4,4),(-3,1)],color="black",thickness=2) G+=line([(-3,1),(-2,-1)],color="black",thickness=2) G.show(gridlines=[[-5,-4,-3,-2,-1,0,1,2,3,4,5],[-5,-4,-3,-2,-1,0,1,2,3,4,5]],aspect_ratio=1,ticks=[1,1],fontsize=13) 
       
#slope field and solutions to y'=y, exponential x,y = var('x y') G=plot_slope_field(y, (x,-5,5), (y,-5,5),plot_points=50) G+=plot(e^x/2,xmin=-5,xmax=5,ymin=-5,ymax=5,color="orange") G+=plot(e^x,xmin=-5,xmax=5,ymin=-5,ymax=5,color="blue") G+=plot(-e^x/2,xmin=-5,xmax=5,ymin=-5,ymax=5,color="red") G+=plot(-3*e^x,xmin=-5,xmax=5,ymin=-5,ymax=5,color="green") G.show(aspect_ratio=1) 
       
#slope field and solutions for y'=y*(1-y/3), logistic x,y = var('x y') G=plot_slope_field(y*(1-y/3), (x,-1,5), (y,-5,5),plot_points=50) G+=plot(3/(1+e^(-x)),xmin=-1,xmax=5,ymin=-2,ymax=5,color="orange") G+=plot(3/(1+10*e^(-x)),xmin=-1,xmax=5,ymin=-2,ymax=5,color="blue") G+=plot(3/(1+30*e^(-x)),xmin=-1,xmax=5,ymin=-2,ymax=5,color="brown") G+=plot(3/(1-e^(-x)/10),xmin=-1,xmax=5,ymin=-2,ymax=5,color="red") G+=plot(3/(1-1000*e^(-x)),xmin=-1,xmax=5,ymin=-2,ymax=5,color="green") G+=plot(3,xmin=-1,xmax=5,ymin=-2,ymax=5,color="purple") G+=plot(0,xmin=-1,xmax=5,ymin=-2,ymax=5,color="purple") G.show(aspect_ratio=1) 
       
#slope field and solutions to y'=-y/x, hyperbolas x,y = var('x y') G=plot_slope_field(-y/x, (x,-5,5), (y,-5,5),plot_points=50) G+=plot(1/x,xmin=-5,xmax=5,ymin=-5,ymax=5,color="orange") G+=plot(2/x,xmin=-5,xmax=5,ymin=-5,ymax=5,color="blue") G+=plot(-1/x,xmin=-5,xmax=5,ymin=-5,ymax=5,color="red") G+=plot(-2/x,xmin=-5,xmax=5,ymin=-5,ymax=5,color="green") G+=plot(0,xmin=-5,xmax=5,ymin=-5,ymax=5,color="purple") G.show(aspect_ratio=1) 
       
#slope field and solutions to y'=-x/y, circles x,y = var('x y') G=plot_slope_field(-x/y, (x,-3,3), (y,-3,3),plot_points=50) G+=plot(sqrt(1-x^2),xmin=-1,xmax=1,ymin=-3,ymax=3,color="orange") G+=plot(sqrt(2-x^2),xmin=-sqrt(2),xmax=sqrt(2),ymin=-3,ymax=3,color="blue") G+=plot(-sqrt(3-x^2),xmin=-sqrt(3),xmax=sqrt(3),ymin=-3,ymax=3,color="red") G+=plot(-sqrt(4-x^2),xmin=-2,xmax=2,ymin=-3,ymax=3,color="green") G.show(aspect_ratio=1) 
       
#slope field for y'=1-x^2-y^2 x,y = var('x y') G=plot_slope_field(1-x^2-y^2, (x,-3,3), (y,-3,3),plot_points=50) G.show(aspect_ratio=1) #euler's method #initial condition (-2,2) xold=-2 yold=2 #marking the starting point G+=point((-2,2),color="black",size=20) #number of steps and step size h steps=25 h=4.0/steps for n in range(steps): #increment xold xnew=xold+h #change yold based on the slope at (xold,yold) ynew=yold+(1-xold^2-yold^2)*h #draw a line between (xold,yold) and (xnew,ynew) G+=line([(xold,yold),(xnew,ynew)],color="red") #set xnew and ynew to xold and yold xold=xnew yold=ynew #repeating with 50 steps #initial condition (-2,2) xold=-2 yold=2 steps=50 h=4.0/steps for n in range(steps): #increment xold xnew=xold+h #change yold based on the slope at (xold,yold) ynew=yold+(1-xold^2-yold^2)*h #draw a line between (xold,yold) and (xnew,ynew) G+=line([(xold,yold),(xnew,ynew)],color="green") #set xnew and ynew to xold and yold xold=xnew yold=ynew #repeating with 100 steps #initial condition (-2,2) xold=-2 yold=2 steps=100 h=4.0/steps for n in range(steps): #increment xold xnew=xold+h #change yold based on the slope at (xold,yold) ynew=yold+(1-xold^2-yold^2)*h #draw a line between (xold,yold) and (xnew,ynew) G+=line([(xold,yold),(xnew,ynew)],color="blue") #set xnew and ynew to xold and yold xold=xnew yold=ynew G.show(aspect_ratio=1) #close up near the starting point G.axes_range(-2,-3/2,-1/2,2) G.show()